163 research outputs found

    New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Get PDF
    Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR) wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned

    B anomalies and muon g - 2 from Dark Matter

    Get PDF
    Motivated by the result of the Muon g-2 experiment and the long-standing anomalies in semileptonic 퐔 meson decays, we systematically build a class of minimal models that can address both experimental results thanks to the contributions of a set of new fields that include a thermal Dark Matter candidate. This talk is mainly based on Refs

    Light hadron spectroscopy on the lattice with the non-perturbatively improved Wilson action

    Get PDF
    We present results for the light meson masses and decay constants as obtained from calculations with the non-perturbatively improved (`Alpha') action and operators on a 24^3 \times 64 lattice at beta = 6.2, in the quenched approximation. The analysis was performed in a way consistent with O(a) improvement. We obtained: reasonable agreement with experiment for the hyperfine splitting; f_K=156(17) MeV, f_pi =139(22) MeV, f_K/f_pi = 1.13(4) ; f_{K*}=219(7) MeV, f_rho =199(15) MeV, f_phi =235(4) MeV; f_{K*}^{T}(2 GeV) = 178(10) MeV, f_rho^{T}(2 GeV) =165(11) MeV, where f_V^{T} is the coupling of the tensor current to the vector mesons; the chiral condensate ^\bar{MS} (2 GeV)= - (253 +/- 25 MeV)^3. Our results are compared to those obtained with the unimproved Wilson action. We also verified that the free-boson lattice dispersion relation describes our results very accurately for a large range of momenta.Comment: 29 pages (LaTeX), 14 Postscript figure

    New results from APE with non-perturbatively improved Wilson fermions

    Get PDF
    We present the results for light hadron spectrum, decay constants and the quark masses obtained with non-perturbatively improved Wilson fermions. We also give our preliminary results for the heavy-light decay constants.Comment: 3 pages, 2 figures, corrected some typos and one reference added, LATTICE98(spectrum

    Stellar evolution confronts axion models

    Get PDF
    Axion production from astrophysical bodies is a topic in continuous development, because of theoretical progress in the estimate of stellar emission rates and, especially, because of improved stellar observations. We carry out a comprehensive analysis of the most informative astrophysics data, revisiting the bounds on axion couplings to photons, nucleons and electrons, and reassessing the significance of various hints of anomalous stellar energy losses. We confront the performance of various theoretical constructions in accounting for these hints, while complying with the observational limits on axion couplings. We identify the most favorable models, and the regions in the mass/couplings parameter space which are preferred by the global fit. Finally, we scrutinize the discovery potential for such models at upcoming helioscopes, namely IAXO and its scaled versions

    Unmet needs in ANCA-associated vasculitis: Physicians’ and patients’ perspectives

    Get PDF
    In recent years, clinical research has increased significantly and therapies for antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis have improved. However, there are still unanswered questions and unmet needs about AAV patients. The purpose of this review is to examine the frontiers of research related to emerging biomarkers eventually predicting relapse, and new therapeutic approaches, not to mention new quality of life assessment tools. Identifying predictors of relapse may help optimize therapeutic strategies, minimize disease recurrence, and reduce treatment-related side effects. In addition, it is important to recognize that patients may suffer long-term consequences of the disease and its treatment, which, although life-saving, is often associated with significant side effects. Our goal, therefore, is to highlight what has been achieved, the pitfalls, and what still needs to be done, comparing the views of physicians and patients

    Four-point functions and kaon decays in a minimal AdS/QCD model

    Full text link
    We study the predictions of holographic QCD for various observable four-point quark flavour current-current correlators. The dual 5-dimensional bulk theory we consider is a SU(3)L×SU(3)RSU(3)_L \times SU(3)_R Yang Mills theory in a slice of AdS5AdS_5 spacetime with boundaries. Particular UV and IR boundary conditions encode the spontaneous breaking of the dual 4D global chiral symmetry down to the SU(3)VSU(3)_V subgroup. We explain in detail how to calculate the 4D four-point quark flavour current-current correlators using the 5D holographic theory, including interactions. We use these results to investigate predictions of holographic QCD for the ΔI=1/2\Delta I = 1/2 rule for kaon decays and the BKB_K parameter. The results agree well in comparison with experimental data, with an accuracy of 25% or better. The holographic theory automatically includes the contributions of the meson resonances to the four-point correlators. The correlators agree well in the low-momentum and high-momentum limit, in comparison with chiral perturbation theory and perturbative QCD results, respectively.Comment: Published version, title changed to conform with Journal format, references and clarifying remarks added, 40 pages, 5 figure

    Impact of Acute Kidney Injury and CKD on Adverse Outcomes in Critically Ill Septic Patients

    Get PDF
    Introduction: Chronic kidney disease (CKD) and acute kidney injury (AKI) are strongly associated with excess morbidity and mortality and frequently co-occur in critically ill septic patients, but how their interplay affects clinical outcomes is not well elucidated. Methods: We conducted a single-center, retrospective cohort study of 2632 adult patients admitted to the intensive care unit (ICU) with severe sepsis or septic shock. Subjects were classified into 6 groups according to baseline CKD (no-CKD: estimated glomerular filtration rate [eGFR] ≄60; CKD: eGFR 15−59 ml/min per 1.73 m2) and incident AKI by the Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine criteria (no-AKI, AKI stage 1, AKI stages ≄2) during ICU stay. Study outcomes were 90-day mortality (in hospital or within 90 days of discharge) and incident/progressive CKD. Results: Prevalent CKD was 46% and incident AKI was 57%. Adjusted hazard ratios (95% confidence intervals) for 90-day mortality relative to the reference group of no-CKD/no-AKI were 1.5 (1.1−2.0) in no-CKD/AKI stage 1, 2.4 (1.9−3.1) in no-CKD/AKI stages≄2, 1.1 (0.8−1.4) in CKD/no-AKI, 1.2 (0.9−1.6) in CKD/AKI stage 1, and 2.2 (1.7−2.9) in CKD/AKI stages ≄2. A similar trend was observed for incident/progressive CKD during a median follow-up of 15.3 months. Conclusion: Stage 1 AKI on CKD was not associated with an independent increased risk of adverse outcomes in critically ill septic patients. AKI stages ≄2 on CKD and any level of AKI in no-CKD patients were strongly and independently associated with adverse outcomes. Sepsis-associated stage 1 AKI on CKD may represent distinct underlying pathophysiology, with more prerenal cases and less severe de novo intrinsic damage, which needs further investigation

    Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    Get PDF
    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phosphosilicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment
    • 

    corecore